

Dr. Rubén Irusta and Dr. Dolores Hidalgo*

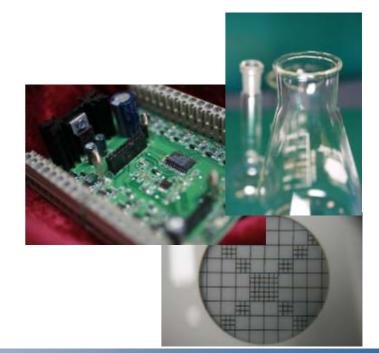
FUNDACIÓN CARTIF – Environmental Division

Parque Tecnológico de Boecillo, 205

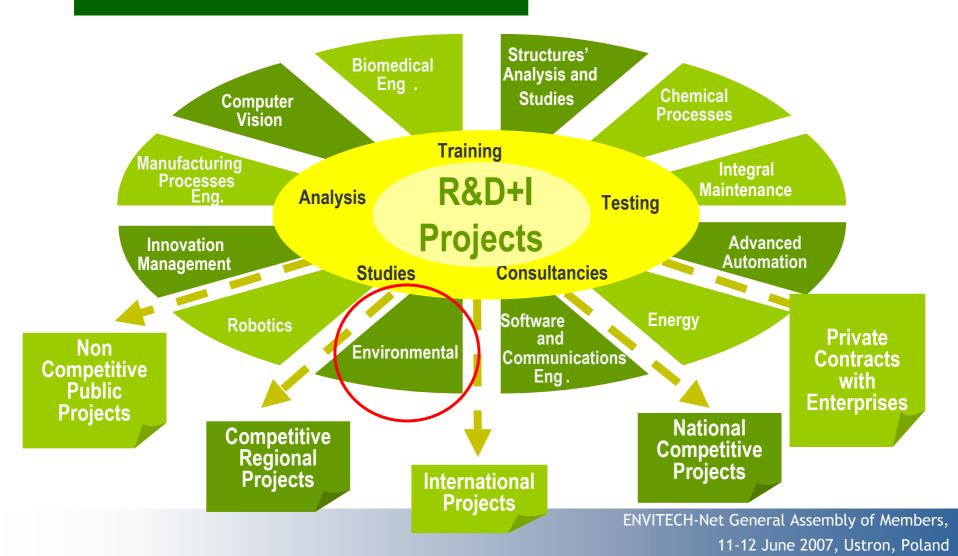
47151- Valladolid (SPAIN)

Tel. +34 983 546504 Fax +34 983 546521

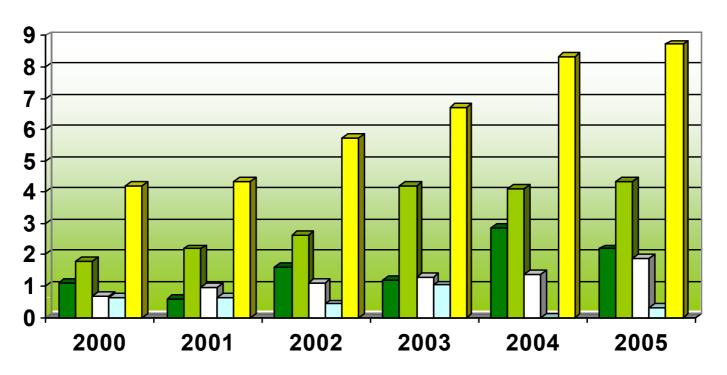
* dolhid@cartif.es



MISSION

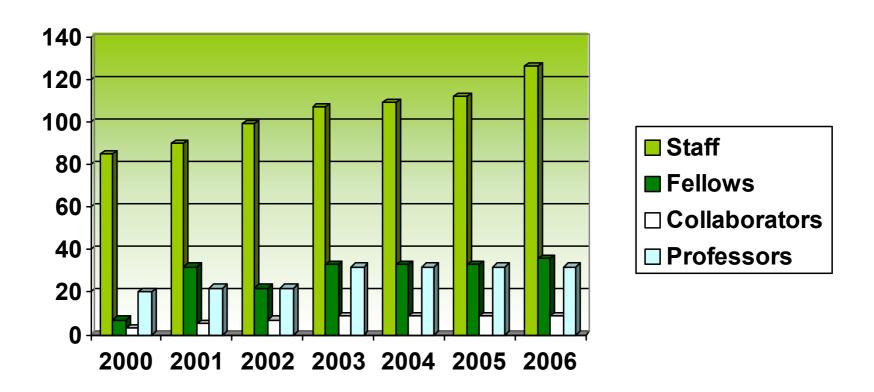

- Identify technology needs to develop RTD-based knowledge
- Support technological innovation among SMEs and micro-SMEs
- Disseminate RTD and innovation results

FIELDS OF RESEARCH



CARTIF IN FIGURES

Total income (M€)


■ Competitive public ■ Companies □ Not competitive public □ Other □ Total

CARTIF IN FIGURES

Human resources

International

dimension

International Dimension

CARTIF participates now in 21 international projects

VI Framework Programme (11)

LIFE (1)

Interreg III A, Interreg III C (3)

Intelligent Energy (2)

MEDA (1)

CYTED (2)

COST (1)

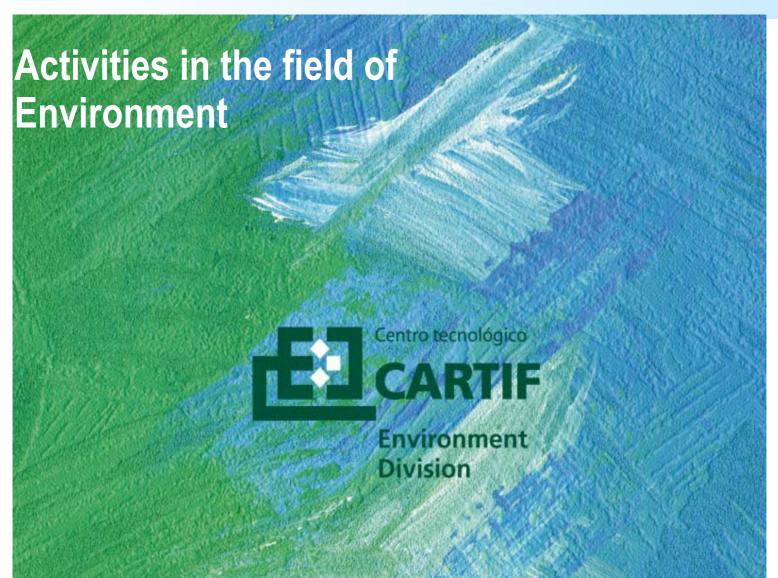
Projects submitted in 2007 to FP7 by CARTIF Environmental Division

- VESSEL- Advanced Telemetry and Decision Support Systems for Efficient Sea Transportation Call FP7-SST-2007-1 (STREP)
- BLUMET- Integrated Strategies for Industrial Wastewater Reuse Call FP7-ENV-2007-1
 (Collaborative Project)
- EcoNewa- Cost-Effective, Environmentally Safe Waste Management Treatment Technologies and Services in Nepal Call FP7-SST-2007-1 (Coordination Action)
- KOTIM Knowledge based technologies for industrial and municipal waste management Call FP7-REGPOT-2007 (Network)

CARTIF participates in the following international networks:

- **AER: Assembly of European Regions**
- CYTED: Ciencia y Tecnología para el Desarrollo
- **EUBIA:** European Biomass Industry Association. (Board member)
- TII: Technology Innovation Information. (Board member)
- SETAC: Society of Environmental Toxicology and Chemistry
- MESAEP: Mediterranean Scientific Association of Environmental Protection
- **EARTO:** European Association of Research and Technology Organisations
- ISES: International Solar Energy Society
- IWA: International Water Association
- ENVITECH: International Scientific Thematic Network for Environmental Technology

CARTIF participates in the following international European Platforms:


- **WSSTP: Water Supply and Sanitation Technology Platform**
- SUSCHEM: European Technology Platform for Sustainable Chemistry
- ISETP: Industrial Safety European Technology Platform
- ECTP: European Construction Technology Platform
- FFL: European Technology Platform "Food for Life"
- HFP: Hydrogen and Fuel Cell Technology Platform
- Plant ETP: European Technology Platform "Plants for the Future"
- NESSI: Networked European Services and Software Initiative Technology Platform
- ARTEMIS: European Technology Platform on Embedded Systems
- eMobility: Mobile and Wireless Communications Technology Platform
- **EPoSS:** European Technology Platform on Smart Systems Integration
- **FTP: Forest Based Sector Technology Platform**
- MANUFUTURE: Future Manufacturing Technologies Platform ENVITECH-Net General Assembly of Members, 11-12 June 2007, Ustron, Poland

CARTIF participates in the following Spanish Platforms:

- **WSSTP: Water Supply and Sanitation Technology Platform**
- SUSCHEM: European Technology Platform for Sustainable Chemistry (PETEQUS)
- ISETP: Industrial Safety European Technology Platform (PTESI)
- ECTP: European Construction Technology Platform (PTEC)
- **■** FFL: European Technology Platform "Food for Life"
- **HFP:** Hydrogen and Fuel Cell Technology Platform (PTEHPC)
- Plant ETP: European Technology Platform "Plants for the Future"
- NESSI: Networked European Services and Software Initiative Technology Platform (INES)
- ARTEMIS: European Technology Platform on Embedded Systems (PROMETEO)
- eMobility: Mobile and Wireless Communications Technology Platform
- **EPoSS: European Technology Platform on Smart Systems Integration**
- **FTP: Forest Based Sector Technology Platform (PTEF)**

FUNDACIÓN CARTIF-Environment Division Research lines

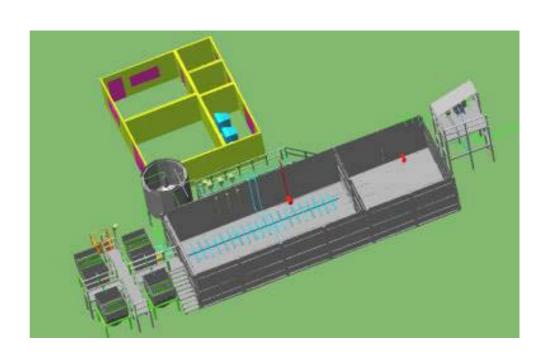
Environmental Technology Area

- Pollutant emissions, sewage and solid waste treatment
- Pollution minimization and engine optimization
- Advanced treatment of effluents and pollutants emissions
 - Membrane process
 - Advanced Oxidation Process (AOP's)
 - Photocatalysis in liquid & gaseous phases
- Waste and Sub-products valorization
 - Chemical recycling of plastic
 - Natural stone utilization
 - Development of advanced composites

FUNDACIÓN CARTIF-Environment Division Research lines

Sustainable Management Area

- Eco-design
- Life Cycle Assessment (LCA)
- Environmental Risks Assessment (ERA)


Environmental Technologies Area

- Pollutant emissions, sewage and solid waste treatment
- Pollution minimization and engine optimization

Water Integral Management: Design of modular plants

- 2.000 population equivalent
- Anoxic aerobic
- Nitrogen removal
- Reduced sludge production
- Fast and easy to install
- Easily expandable
- High degree of automation
- Lower maintenance and operational requirements

Piggery Waste Denitrification

Objectives:

Transformation of a highly problematic waste because of its composition, quantity and location in preponderantly reusable products through their application to soil in a more rational and environment friendly way.

Results:

High ammonia removal efficiency of the air stripping method (80%).

Effluents Degradation in Anaerobic Bio-Reactors

Objectives:

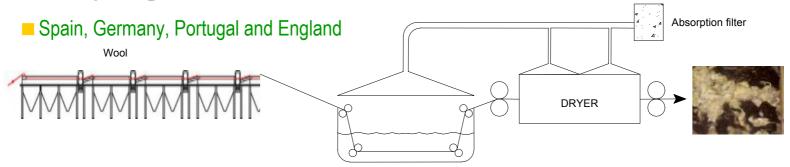
■ Study on the removal of organic matter in anaerobic bio-reactors by using organic waste

feeding

Results:

The obtained effluent presents better conditions for its applicability in the soil than the original piggery.

New eco-efficient process to remove the tar pitch from wool - CRAFT


Objectives:

To replace the detergents and chlorinated solvents used to wash off wool with other less dangerous products for human beings and more environmental friendly.

Advantages:

Reduction the spilt of detergents to the rivers and atmospheric emissions of organic compounds, which will produce an environmental improvement and safety at work.

Participating countries:

Development Tools and Guidelines for the Promotion of the Sustainable Urban Wastewater Treatment and Re-use -MEDA

Objectives:

- The development of specifications for the urban wastewater treatment and agricultural reuse
- The development of the appropriate tools for the safety and effective control and monitoring of the operation of the wastewater treatment plants
- The development of a multi-criteria analysis user friendly software

Results:

- http://www.uest.gr/medaware/
- http://medaware.cartif.com.es

Participating countries:

Cyprus, Greece, Jordan, Lebanon, Morocco,
 Palestinian Authority, Turkey and Spain

Health surveillance system in urban areas near incinerators and industrial premises

Objectives:

- Development of guidelines for the implementation of an environmentally / sanitary surveillance system that could help in ascertaining the sort of long-term health effects of monitored pollutants
- These guidelines will be defined on the basis of pilot project that will have been previously carried out on the territories of three different partners: Italy, Hungary and Poland

Result:

- Development of the guidelines previously mentioned
- Risk analysis

Participating countries:

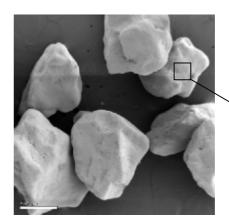
Spain, Poland, Italy, Greece, Austria, Hungary

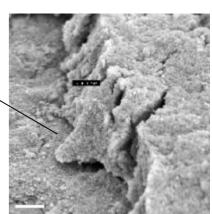
Environmental Technologies Area

- Advanced treatment of effluents and pollutants emissions

Advanced Oxidation Processes (AOP) in aqueous phase

- Study of the phenol photodegradation
 - Identification of intermediates of reaction
 - Mechanism of the reaction
- Study of textiles effluent photodegradation
 - Optimal operation conditions
 - Influence of pollutant type
- Study of the PCBs photodegradation
- Methodology Scale up of the process
- Economic evaluation Industrial applications


Advanced Oxidation Processes (AOP) in gas phase


Photocatalytic degradation of micro-pollutants in gas phase using fluidized bed technology

Study of the trichloroethylene and toluene degradation

Development of new self-cleaning and disinfectant materials

- Evaluation of methods for developing thin films:
 - Chemical Vapor Deposition (CVD)
 - Sol-gel methods

Wastewater treatment by means of membrane technology

Aerobic membrane bioreactors (MBR)

Anaerobic Membrane Bioreactors (AnMBR)

Environmental Technologies Area

- Waste and Sub-products valorization

Chemical Recycling of Plastics

- Design and construction of a pilot plant for post-consumer PET and PU waste chemical recycling
 - Verification Tests and set-up of the reactor and the separation techniques.
 - ✓ Set-up of the analytical techniques: DSC, FTIR, GPC, LC-MS.
 - ✓ Monomer recovery (BHET) of 85%.
- Design and construction of a pilot plant (fluidized bed reactor) for polyolefins cracking

Manufacturing of artificial stone using stone waste from a limestone exploitation

Objective:

To design and develop the manufacture process of artificial stone materials from limestone sludge

Characteristics:

Product based in wastes with the same properties and aesthetic aspect as natural stone articles

Valorization study of the rubber from end-of-life tyres for their application as crash barriers

Identification of the organic formulation needed to obtain a material from rubber and polypropylene pellets in such a way that it can be molded by injection, and development of the industrialization process to be implanted.

Characteristics:

Development of a new product from end of life tires and plastic wastes for its application as guardrails covers.

Sustainable Management Area

- Eco-design
- Life Cycle Assessment
- Environmental Risk Assessment

Strategies of packaging and packaging waste management

Evaluation of the Environmental Impacts associated with Household and Sanitary Packaging and Packaging Wastes through Life Cycle Assessment.

Eco-design of street lighting Systems using LCA

Evaluation of the Environmental Impacts associated with Household and Sanitary Packaging and Packaging Wastes through Life Cycle Assessment.

LCA of Packaging and Packaging Waste Collection in Rural Areas

Evaluation of the Environmental Impacts associated with Household and Sanitary Packaging and Packaging Wastes through Life Cycle Assessment.

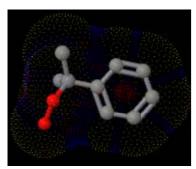
Environmental impact associated with the change of combustible in a thermal power plant using LCA

Determination of the environmental impact associated with changes in the productive process

Ecodesign in the Metal-Mechanic Sector

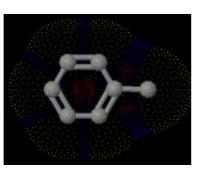
■ Establishment of a methodology suitable for the environmental and economic development of a product during the design phase (Ecodesign) and adaptation to the Metal-Mechanic Sector.

Development of new materials for the production of Reusable Sanitary Underpads


■ Characterization study and improvement of the environmental performance of the underpads for incontinence.

ECODESIGN-SMEs Consolidation and Competitiveness Plan

Introduction of the Ecodesign methodology in the routine tasks of SMEs,


Gas Chromatography Analysis of gas emissions and VOCs released during the resin curing process

Objective:

Realization of analysis of gas emissions and VOCs released during the resin curing process by gas chromatograhpy. These resins will be used in the manufacture of composites. A Human Health and Environmental Risk Assessment of the identified chemicals was carried out.

Dr. Rubén Irusta and Dr. Dolores Hidalgo*

FUNDACIÓN CARTIF – Environmental Division

Parque Tecnológico de Boecillo, 205

47151- Valladolid (SPAIN)

Tel. +34 983 546504 Fax +34 983 546521

* dolhid@cartif.es

